Loading...

Category: Treatment

Neural basis of Huntington disease

Huntingtons disease is a neurodegenerative disorder caused by a mutant gene that produces a toxic protein damaging nerve cells in the brain that leads to a decline in cognitive and motor function. This post explores the latest research on the neural basis of HD, brain regions affected, pathophysiology of neuronal death, and molecular mechanisms. Additionally, we will delve into potential treatments, such as gene therapy or stem cell therapy, that are being investigated to improve patient quality of life.

Neural basis of Parkinson disease

Parkinson disease is a neurodegenerative disorder that affects millions of people globally. It is caused by the loss of dopamine-producing neurons in the brain, resulting in motor and non-motor symptoms that can significantly affect individuals quality of life. While current treatments aim to alleviate the symptoms of Parkinsons disease, ongoing research into its neural basis holds promise for developing more effective therapies and addressing ethical concerns.

Neural basis of Tourette syndrome

Tourette Syndrome (TS) is a complex neuropsychiatric disorder characterized by repetitive, involuntary movements and sounds known as tics. The neural basis of Tourette syndrome is incredibly complex and involves a range of brain regions and neural circuits. Several theories attempt to explain the underlying causes of TS, including abnormalities in dopamine, glutamate, and GABA systems. Neuroimaging studies have shown abnormal activation in prefrontal, striatal, and thalamic regions. Additionally, the basal ganglia and CSTC circuits are thought to play a critical role in the onset and maintenance of tics. This post explores the neural basis of Tourette syndrome and its underlying causes, highlighting potential applications and challenges in understanding TS.

Neural basis of acute pain

The neural basis of acute pain is a complex process that involves the nervous system, the brain, and the limbic system. Research on the neural basis of pain has potential applications in the development of effective treatments and therapies for pain management. However, there are challenges and limitations associated with this research.

Neural basis of drug abuse

Drug addiction is a global problem that affects communities and individuals alike, and understanding the neural basis for this disease is crucial to developing effective prevention and treatment strategies. This article delves into the complex and multifaceted nature of addiction, outlining the varied neurobiological mechanisms driving drug dependence, exploring the vital role of the reward and stress response systems, neurotransmitters, genetics, and substance-specific effects. Additionally, the article provides potential applications of this research, highlights the challenges and limitations in the field, and discusses future research scope.